New and Notable This Week

This week’s selection of recently published papers from MDPI journals.

toxins-logo

The Use of Recently Developed Histochemical Markers for Localizing Neurotoxicant Induced Regional Brain Pathologies

AbstractNeuronal and vascular brain components are interrelated morphologically, physiologically and developmentally. Due to this close interrelationship, it is often difficult to understand the cause and effect relationship between neuronal vs. vascular dysfunction and pathology. This review will discuss four of the more promising recent developments for detecting vascular pathology, and will compare them with the labeling pattern seen with markers of glial and neuronal pathology; following exposure to well characterized neurotoxicants. To detect the vascular dysfunction in the brain, we recently developed a Fluoro-Turquoise gelatin conjugate (FT-gel), a fluorescent probe that helps to delineate between healthy vs. sclerotic vessels. Similarly, we have investigated the potential for Fluoro-Gold to label in vivo all the endothelial cells in the brain as they co-localize with RECA, an endothelial cell marker. We have also developed Amylo-Glo, a fluorescent tracer that can detect neurotoxic A-beta aggregates in the brain. In this article, we will discuss the potential use of these novel histochemical markers to study the neurotoxicant induced brain. We will also discuss neurovascular strategies that may offer novel therapeutic opportunities for neurodegenerative disorders.

Slide2

For open-access article, see: Sarkar, S.; Raymick, J.; Schmued, L.C. The Use of Recently Developed Histochemical Markers for Localizing Neurotoxicant Induced Regional Brain Pathologies.Toxins 20146, 1453-1470.

 

Cancers Logo

STAT3 Activity and Function in Cancer: Modulation by STAT5 and miR-146b

Abstract: The transcription factor STAT3 regulates genes that control critical cellular processes such as proliferation, survival, pluripotency, and motility. Thus, under physiological conditions, the transcriptional function of STAT3 is tightly regulated as one part of a complex signaling matrix. When these processes are subverted through mutation or epigenetic events, STAT3 becomes highly active and drives elevated expression of genes underlying these phenotypes, leading to malignant cellular behavior. However, even in the presence of activated STAT3, other cellular modulators can have a major impact on the biological properties of a cancer cell, which is reflected in the clinical behavior of a tumor. Recent evidence has suggested that two such key modulators are the activation status of other STAT family members, particularly STAT5, and the expression of STAT3-regulated genes that are part of negative feedback circuits, including microRNAs such as miR-146b. With attention to these newly emerging areas, we will gain greater insight into the consequence of STAT3 activation in the biology of human cancers. In addition, understanding these subtleties of STAT3 signaling in cancer pathogenesis will allow the development of more rational molecular approaches to cancer therapy.

Slide3

For open-access article, see: Walker, S.R.; Xiang, M.; Frank, D.A. STAT3 Activity and Function in Cancer: Modulation by STAT5 and miR-146bCancers 20146, 958-968.

 

molecules-logo

Thermodynamics and Kinetics of Guest-Induced Switching between “Basket Handle” Porphyrin Isomers

Abstract: The synthesis and switching properties of two “basket handle” porphyrin isomers is described. The cis-oriented meso-phenyl groups of these porphyrins are linked at their ortho-positons via benzocrown-ether-based spacers, which as a result of slow atropisomerization are located either on the same side of the porphyrin plane (cis), or on opposite sides (trans). In solution, the cis-linked isomer slowly isomerizes in the direction of the thermodynamically more stable trans-isomer. In the presence of viologen (N,N’-dialkyl-4,4′-bipyridinium) derivatives, which have different affinities for the two isomers, the isomerization equilibrium could be significantly influenced. In addition, the presence of these guests was found to enhance the rate of the switching process, which was suggested to be caused by favorable interactions between the positively charged guest and the crown ethers of the receptor, stabilizing the transition state energies of the isomerization reaction between the two isomers.

Slide3

For open-access article, see: Deutman, A.B.C.; Woltinge, T.; Smits, J.M.M.; De Gelder, R.; Elemans, J.A.A.W.; Nolte, R.J.M.; Rowan, A.E. Thermodynamics and Kinetics of Guest-Induced Switching between “Basket Handle” Porphyrin IsomersMolecules 201419, 5278-5300.

 

pharmaceuticals-logo

Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

Abstract: Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.

Slide2

For open-access article, see: Zhang, G.; Sunkara, L.T. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic ApplicationsPharmaceuticals 20147, 220-247.


Cancers Logo

Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

Abstract: Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin®) and rituximab (Rituxan®)) and the first approved cancer vaccine, Provenge® (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response..

Slide05

For open-access article, see: Pimenta, E.M.; Barnes, B.J. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived CancersCancers 20146, 969-997.

 

Comments

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s